Discovering business intelligence from online product reviews: A rule-induction framework
نویسندگان
چکیده
Online product reviews are a major source of business intelligence (BI) that helps managers and marketers understand customers’ concerns and interests. The large volume of review data makes it difficult to manually analyze customers’ concerns. Automated tools have emerged to facilitate this analysis, however most lack the capability of extracting the relationships between the reviews’ rich expressions and the customer ratings. Managers and marketers often resort to manually read through voluminous reviews to find the relationships. To address these challenges, we propose the development of a new class of BI systems based on rough set theory, inductive rule learning, and information retrieval methods. We developed a new framework for designing BI systems that extract the relationship between the customer ratings and their reviews. Using reviews of different products from Amazon.com, we conducted both qualitative and quantitative experiments to evaluate the performance of a BI system developed based on the framework. The results indicate that the system achieved high accuracy and coverage related to rule quality, and produced interesting and informative rules with high support and confidence values. The findings have important implications for market sentiment analysis and e-commerce reputation
منابع مشابه
Extracting Business Intelligence from Online Product Reviews: An Experiment of Automatic Rule-Induction
Online product reviews are a major source of business intelligence (BI) that helps managers and market researchers make important decisions on product development and promotion. However, the large volume of online product review data creates significant information overload problems, making it difficult to analyze users’ concerns. In this paper, we employ a design science paradigm to develop a ...
متن کاملA Rule-Based Approach For Effective Sentiment Analysis
The success of Web 2.0 applications has made online social media websites tremendous assets for supporting critical business intelligence applications. The knowledge gained from social media can potentially lead to the development of novel services that are better tailored to users’ needs and at the same time meet the objectives of businesses offering them. Online consumer reviews are one of th...
متن کاملAn Integrated Enterprise Resources Planning (ERP) Framework forFlexible Manufacturing SystemsUsing Business Intelligence (BI)Tools
Nowadays Business intelligence (BI) tools provide optimal decision making, analyzing, controlling and monitoring of operations in enterprise systems like enterprise resource planning (ERP) and mainly refer to strong decision making methods used in online analytical processing, reporting and data analysis, such as improve internal processes, analysis of resources, information needs analysis, red...
متن کاملLived experience Consumers in online stores based on the Stimulator-Organism-Response Framework (SOR)
In this study, based on the stimulus-organism-response framework (SOR), to develop a comprehensive framework of consumer experience in the field of online retailers, examining the impact of online store environment elements (web quality and brand Web site) as forecasting for emotional responses and cognitive (trust and perceived risk) and behavioral responses of consumers (want to buy) are disc...
متن کاملDiscovering Business Intelligence from the Subjective Web Data
The online word-of-mouth behavior that exists today in the Web represents new and measurable sources of information. The automated discovery or mining of consumer opinions from these sources is of great importance for marketing intelligence and product benchmarking. Techniques are now being developed to effectively and easily mine the consumer opinions from the Web data and to timely deliver th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012